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Preview

The aim is to examine time varying regression models from the point of
view of a time varying joint distribution (ie - time varying correlations
and variances)

We would argue it is a more logical starting point

More satisfactory properties

Can be easily implemented using the DCS/GAS methodology

Other issues such as testing for parameter constancy follow naturally
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Talk Outline
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4 Simulation Study - Testing and Estimation

5 Application - Shanghai/NYSE Convergence
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Motivation for TVP Regression

DCS implies we are all on board with TVP to some extent

Evidence of wide spread parameter instability from Stock and Watson
(1996, JBES) using 76 macroeconomic and financial time series.

Lots of examples appearing in the literature - Cogley and Sargent
(2002, 2005, 2010), Ang and Chen (2007), Dangl and Halling (2012),
etc....
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Standard Methods

Time-varying parameters are usually modeled in a regression framework by
letting the coefficient of an explanatory variable change over time. Thus

yt = βtxt + εt , t = 1, ...,T ,

where βt follows a stochastic process, such as an AR(1) or random walk;
see Harvey (1989, p. 408-11) and the test procedure proposed by Nebeya
and Tanaka (1988).

This model is valid if the explanatory variable is non-stochastic, for
example, if it is a function of time. If the explanatory variable is
stochastic then it needs to be independent of βt and εt in all time
periods.

If xt is a linear process, then yt will, in general, be nonlinear.

Concerns about the path followed by the dependent variable when the
explanatory variable is integrated; see the discussion in Harvey (1989,
p. 409-10).
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Regression from the Joint Distribution

Suppose that y1t and y2t are jointly normal with zero means and
covariance matrix

Σ =

[
σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

]
This implies

y1t | y2t = βy2t + εt , εt ∼ NID
(
0, σ2

ε

)
, t = 1, ...,T ,

where
β = σ12/σ2

2 = ρσ1/σ2

and εt is distributed independently of y2t with variance σ2
ε = σ2

1 − ρ2σ2
2 .

NOTE: If Σ is time dependent then β is no longer weakly exogenous as
in the static case studied by Engle, Hendry and Richard (1983).
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What to do?

We propose to model the time varying joint distribution with the
DCS/GAS approach and then derive the implied time varying regression
model.

The Simple Bivariate Case

[
yt
xt

]
∼ N

(
µ =

[
µy

µx

]
, Σt =

[
σ2
yt ρtσytσxt

ρtσytσxt σ2
xt

])
with link functions

σ2
it = exp(2λit)

ρt =
ḡ

g
=

eγt−e−γt

2
eγt+e−γt

2
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The dynamics for the time varying parameters in the joint distribution are
given by

γt+1|t = ω1(1− φ1) + φ1γt|t−1 + κ1v1t

λyt+1|t = ω2(1− φ2) + φ2λyt|t−1 + κ2v2t

λxt+1|t = ω3(1− φ3) + φ3λxt|t−1 + κ3v3t

The scaled score is given by

v1t =
2(yt − µy )(xt − µx )

σytσxt
g2
t −

[
(yt − µy )2

σ2
yt

+
(xt − µx )2

σ2
xt

]
gt ḡt

v2t = 0.5(
(yt − µy )2

σ2
yt

− 1)

v3t = 0.5(
(xt − µx )2

σ2
xt

− 1)
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The method extends beyond the bivariate case - CKL (2011, JBES)

Can explicitly account for heavy tails

Beta-t-EGARCH enriches dynamics

Issues such as model selection and diagnostics dealt with from implied
conditional distribution and errors.
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Testing Approach - Time Varying Correlation

We suggest an alternative to the LM test of Nyblom (1989) based on the
Ljung-Box test.

Q(γ̂) = T (T + 2)
P

∑
τ=1

r2d (τ)/(T − τ)

where rd (τ) is the τth autocorrelation of the scores evaluated at the MLE
of the static parameter.

Test stat is Chi-Squared with df = m, the No. of fixed parameters in
the dynamic equations.

Test should have greater power when the parameters aren’t random
walks.

The test can be extended to the multivariate setting along the lines of
Hotelling (1980) using results from CKL (2011).
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Simulation Study

Simple bivariate model with changing correlation driven by DCS functional
form.

Sample sizes of T = 200, 500, 1000,

ω = {0.5,−0.2}, φ = {0.1, 0.5, 0.8, 0.95, 0.98, 1} and
κ = {0, 0.1, 0.02, 0.3, 0.04}
Estimates evaluated with the Bias, RMSE and interquartile range
(IQR)

1000 draws for estimation and 5000 for testing

Number of lags for the Ljung-Box test was max(20,
√
T )

Significance level was set to 0.05% for all tests.

Stephen Thiele and Andrew Harvey (University of Cambridge)Time Varying Regression and Changing Correlation January 2013 11 / 24



Estimation Results

Table : Simulation Results for ω

κ 0.02 0.04
φ 0.8 0.95 0.8 0.95
ω T 0.5 -0.2 0.5 -0.2 0.5 -0.2 0.5 -0.2

BIAS 200 0.16 -0.12 0.13 -0.02 0.15 -0.09 0.03 0.02
x10 500 0.02 -0.04 0.02 -0.01 0.03 -0.02 0.02 -0.03

1000 0.01 -0.04 0.02 -0.03 0.01 0.00 0.01 0.01
RMSE 200 1.11 1.34 1.28 1.37 1.10 1.24 1.46 1.47
x10 500 0.56 0.70 0.71 0.74 0.57 0.64 0.90 0.90

1000 0.35 0.44 0.48 0.52 0.38 0.43 0.58 0.56
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Estimation Results

Table : Simulation Results for φ

κ 0.02 0.04
φ 0.8 0.95 0.8 0.95
ω T 0.5 -0.2 0.5 -0.2 0.5 -0.2 0.5 -0.2

BIAS 200 -1.38 -1.52 -2.41 -2.81 -1.62 -1.60 -1.85 -2.23
x10 500 -1.55 -1.41 -1.92 -2.30 -1.39 -1.41 -0.93 -1.05

1000 -1.38 -1.44 -1.16 -1.42 -0.90 -1.24 -0.27 -0.38
RMSE 200 3.76 4.18 4.13 4.75 3.75 3.96 3.46 4.11
x10 500 3.64 3.88 3.57 4.26 3.24 3.55 2.24 2.55

1000 3.42 3.82 2.67 3.15 2.51 3.15 0.22 0.130
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Estimation Results

Table : Simulation Results for κ

κ 0.02 0.04
φ 0.8 0.95 0.8 0.95
ω T 0.5 -0.2 0.5 -0.2 0.5 -0.2 0.5 -0.2

BIAS 200 -0.15 -0.29 -0.07 -0.17 0.00 -0.14 0.09 -0.06
x10 500 0.06 -0.03 0.07 0.00 0.13 0.03 0.13 0.06

1000 0.09 0.01 0.09 0.05 0.12 0.04 0.11 0.05
RMSE 200 1.01 1.06 0.90 0.97 0.95 1.02 0.79 0.87
x10 500 0.49 0.50 0.41 0.47 0.45 0.46 0.37 0.37

1000 0.31 0.33 0.24 0.28 0.31 0.31 0.22 0.20
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Empirical Size of Parameter Constancy Tests

Table : Size Comparison for Parameter Constancy Tests

φ

0.1 0.5 0.8 0.95 0.98 1

T=200
N 0.05 0.05 0.05 0.05 0.05 0.04
Q 0.05 0.05 0.05 0.06 0.05 0.05

T=500
N 0.05 0.04 0.04 0.05 0.06 0.06
Q 0.05 0.05 0.06 0.05 0.06 0.05

T=1000
N 0.04 0.05 0.05 0.05 0.05 0.05
Q 0.06 0.05 0.06 0.05 0.05 0.06

Note: Nominal size is 5%. N and Q are the Nyblom and Ljung-Box tests
respectively. ω = 0.5 and κ = 0.
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Power Comparison for Parameter Constancy Tests

φ

0.1 0.5 0.8 0.95 0.98 1

T=200, κ = 0.02
N 0.05 0.06 0.08 0.16 0.24 0.30
Q 0.06 0.06 0.07 0.09 0.11 0.11

T=1000, κ = 0.02
N 0.06 0.07 0.09 0.24 0.49 0.91
Q 0.06 0.07 0.11 0.30 0.53 0.86

T=200, κ = 0.04
N 0.07 0.08 0.12 0.32 0.45 0.60
Q 0.07 0.07 0.10 0.21 0.29 0.38

T=1000, κ = 0.04
N 0.07 0.08 0.15 0.46 0.80 0.99
Q 0.11 0.14 0.29 0.79 0.96 1

Note: Significance level is 5%. N and Q are the Nyblom and Ljung-Box tests

respectively. ω = 0.5. 5000 replications
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Application - Shanghai/NYSE convergence

Revisiting Chow, Liu and Niu (2011) ”Co-movement of Shanghai and New
York stock prices by time-varying regressions”, Journal of Comparative
Economics.

Aim: To examine the integration of these two markets over time.

Extend Chow et al (2011)

rnt = α + βtZt + σet

βt = βt−1 + ut

where Zt = [r st rnt−1 r st−1]
′

Zt = [r st ]
′

Zt = [r st rnt−1]
′

Zt = [r st rnt−1 r st−1]
′
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Score Approach

Based on TV multivariate t-distribution.

[
rnt
r st

]
∼ t

(
ν, µ =

[
µn

µs

]
, Σt =

[
σ2
it ρ1tσytσxt

ρtσytσxt σ2
xt

])
Captures heavy tails and GARCH effects found in stock returns.

γt+1 = γt + κ1v1t (1)

λnt+1 = ω2(1− φ2) + φ2λnt + κ2v2t (2)

λst+1 = ω3(1− φ3) + φ3λst + κ3v3t (3)
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Shanghai/NYSE Data

Weekly returns on Shanghai & NYSE indices from 11/1992 - 11/2012.
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NYSE = f(Shanghai)
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NYSE = f(Shanghai)
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GARCH Effect Driving TV Coefficient
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Conclusion

Examined TVP regressions based on a TV joint distribution.

More satisfactory properties.

Can be easily implemented using the DCS/GAS methodology.

Demonstrated testing approach to TVP which can be further
developed.
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